metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Feng-Wu Wang

Department of Chemistry, Huainan Normal College, Huainan 232001, People's Republic of China

Correspondence e-mail: fengwuwang@163.com

Key indicators

Single-crystal X-ray study T = 298 KMean $\sigma(C-C) = 0.003 \text{ Å}$ Disorder in solvent or counterion R factor = 0.043 wR factor = 0.113 Data-to-parameter ratio = 18.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Bis{1-[3-(cyclohexylaminio)propyliminomethyl]-2-naphtholato}nickel(II) dichloride 1.24-hydrate

The title complex, $[Ni(C_{20}H_{26}N_2O)_2]Cl_2\cdot 1.24H_2O$, is a mononuclear nickel(II) compound. The Ni^{II} atom, lying on an inversion centre, is four-coordinated in a square-planar geometry by two imine N and two phenolate O atoms from two Schiff bases. Received 17 August 2005 Accepted 12 September 2005 Online 17 September 2005

Comment

Schiff base complexes have been studied extensively, due to their excellent biological activities (Ren *et al.*, 2002; Deschamps *et al.*, 2003; Pal *et al.*, 2003). Nickel(II) complexes are very important in coordination chemistry (Dey *et al.*, 2004; Christensen *et al.*, 1997). The structures of a large number of mono-, di- and polynuclear Schiff base nickel(II) complexes have been reported (Vance *et al.*, 1997; Carbonaro *et al.*, 1999; Rybak-Akimova *et al.*, 1998). The title new nickel(II) complex, (I), is reported here.

Complex (I) is a mononuclear nickel(II) compound, with the Ni^{II} atom lying on an inversion centre (Fig. 1). The structural unit contains an $[Ni(C_{20}H_{26}N_2O)_2]^{2+}$ cation, two Cl⁻ anions and two water molecules, each with site occupancy of 0.62. The Ni^{II} atom is four-coordinated in a square-planar geometry by two imine N and two phenolate O atoms from two Schiff bases. All bond angles (Table 1) subtended at the Ni^{II} centre are comparable with the values observed in other Schiff base nickel(II) complexes (Gomes *et al.*, 2000; Chakraborty *et al.*, 2004).

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved In the crystal structure, the molecules are linked through intermolecular $O-H\cdots Cl$ and $N-H\cdots Cl$ hydrogen bonds (Table 2), forming layers parallel to the *bc* plane (Fig. 2).

Experimental

N-Cyclohexyl-1,3-diaminopropane (0.1 mmol, 15.6 mg) and 2-hydroxy-1-naphthaldehyde (0.1 mmol, 8.6 mg) were dissolved in MeOH (10 ml). The mixture was stirred at room temperature for 10 min to give a clear yellow solution, to which was added an aqueous solution (5 ml) of NiCl₂-4H₂O (0.1 mmol, 20.2 mg) with stirring. The mixture was stirred for another 10 min at room temperature and filtered. After keeping the filtrate in air for 9 d, green block crystals of (I) separated. The crystals were isolated, washed three times with MeOH and dried in a vacuum desiccator using anhydrous CaCl₂ (yield 51.3%). Analysis, found: C 60.89, H 7.27, N 7.30%; calculated for C₄₀H_{54.49}Cl₂N₄NiO_{3.245}: C 62.16, H 7.11, N 7.25%.

Crystal data

 $[\text{Ni}(\text{C}_{20}\text{H}_{26}\text{N}_{2}\text{O})_{2}]\text{Cl}_{2}\cdot1.24\text{H}_{2}\text{O}$ $M_{r} = 772.79$ Monoclinic, $P2_{1}/c$ a = 11.179 (1) Å b = 7.431 (1) Å c = 23.683 (2) Å $\beta = 92.53$ (1)° V = 1965.5 (4) Å³ Z = 2

Data collection

Bruker SMART CCD area-detector diffractometer ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{min} = 0.878, T_{max} = 0.924$ 16272 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.043$ $wR(F^2) = 0.114$ S = 1.024490 reflections 238 parameters H atoms treated by a mixture of independent and constrained refinement reflections $\theta = 2.4-26.8^{\circ}$ $\mu = 0.67 \text{ mm}^{-1}$ T = 298 (2) KBlock, green $0.20 \times 0.13 \times 0.12 \text{ mm}$ 4490 independent reflections

Cell parameters from 3936

 $D_x = 1.299 \text{ Mg m}^{-3}$

Mo $K\alpha$ radiation

3546 reflections with $I > 2\sigma(I)$ $R_{int} = 0.036$ $\theta_{max} = 27.5^{\circ}$ $h = -14 \rightarrow 14$ $k = -9 \rightarrow 9$ $l = -29 \rightarrow 30$

$$\begin{split} w &= 1/[\sigma^2(F_{\rm o}^2) + (0.0602P)^2 \\ &+ 0.2608P] \\ \text{where } P &= (F_{\rm o}^2 + 2F_{\rm c}^2)/3 \\ (\Delta/\sigma)_{\rm max} < 0.001 \\ \Delta\rho_{\rm max} = 0.41 \text{ e } \text{\AA}^{-3} \\ \Delta\rho_{\rm min} &= -0.24 \text{ e } \text{\AA}^{-3} \end{split}$$

Table 1

Selected geometric parameters (Å, $^\circ).$

Ni1-O1	1.827 (2)	Ni1-N1	1.915 (2)
01-Ni1-O1 ⁱ	180	$\begin{array}{c} O1\!-\!Ni1\!-\!N1^i\\ N1\!-\!Ni1\!-\!N1^i \end{array}$	88.34 (7)
01-Ni1-N1	91.66 (7)		180

Symmetry code: (i) -x + 1, -y, -z + 2.

Table 2

Hydrogen-bond geometry (Å, $^{\circ}$).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
N2-H2A···Cl1 ⁱⁱ	0.90	2.24	3.133 (2)	172
$N2-H2B\cdots Cl1^{iii}$	0.90	2.32	3.208 (2)	171
$O2-H2C \cdot \cdot \cdot Cl1$	0.83(1)	2.36 (2)	3.170 (4)	164 (5)
$O2-H2D\cdots Cl1^{iii}$	0.84 (1)	2.56 (2)	3.362 (4)	161 (4)

Symmetry codes: (ii) x, y - 1, z; (iii) $-x + 1, y - \frac{1}{2}, -z + \frac{3}{2}$.

Attempts to refine the water O atom (O2) with full occupancy resulted in a high $U_{\rm iso}$ value, and hence it was refined with partial occupancy; this was initially refined to 0.623 (8) and later fixed at 0.62.

Figure 1

The structure of (I). Displacement ellipsoids are drawn at the 30% probability level. Unlabelled atoms are at the symmetry position (1 - x, -y, 2 - z).

Figure 2

The crystal packing of (I), viewed along the *b* axis. Dashed lines indicate hydrogen bonds. Only the H atoms involved in hydrogen bonding are shown.

Atoms H2*C* and H2*D* were located in a difference Fourier map and refined isotropically, with the O–H and H···H distances restrained to 0.84 (1) and 1.37 (2) Å, respectively, and with a fixed $U_{iso}(H)$ value of 0.08 Å². All other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with N–H = 0.90 Å and C–H distances in the range 0.93–0.98 Å, and with $U_{iso}(H) = 1.2–1.5U_{eq}(C,N)$.

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT* (Bruker, 1998); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997a); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997a); molecular graphics: *SHELXTL* (Sheldrick, 1997b); software used to prepare material for publication: *SHELXTL*.

The author acknowledges Huainan Normal College for financial support.

References

- Bruker (1998). SMART (Version 5.628) and SAINT (Version 6.02). Bruker AXS Inc., Madison, Wisconsin, USA.
- Carbonaro, L., Isola, M., Pegna, P. L. & Senatore, L. (1999). Inorg. Chem. 38, 5519–5525.
- Chakraborty, S., Samanta, B., Chowdhury, C. R., Mitra, S. & Mukherjee, A. K. (2004). Acta Cryst. C60, m578–m580.
- Christensen, A., Jensen, H. S., McKee, V., McKenzie, C. & Munch, M. (1997). *Inorg. Chem.* 36, 6080–6085.

Deschamps, P., Kulkarni, P. P. & Sarkar, B. (2003). Inorg. Chem. 42, 7366-7368.

Dey, S. K., Mondal, N., El Fallah, M. S., Vicente, R., Escuer, A., Solans, X., Font-Bardia, M., Matsushita, T., Gramlich, V. & Mitra, S. (2004). *Inorg. Chem.* 43, 2427–2434.

- Gomes, L., Sousa, C., Freire, C. & de Castro, B. (2000). Acta Cryst. C56, 1201– 1203.
- Pal, B., Ikeda, S. & Ohtani, B. (2003). Inorg. Chem. 42, 1518-1524.
- Ren, S., Wang, R., Komatsu, K., Bonaz-Krause, P., Zyrianov, Y., McKenna, C. E., Csipke, C., Tokes, Z. A. & Lien, E. J. (2002). J. Med. Chem. 45, 410– 419.
- Rybak-Akimova, E. V., Alcock, N. W. & Busch, D. H. (1998). Inorg. Chem. 37, 1563–1574.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997a). SHELXL97 and SHELXS97. University of Göttingen, Germany.
- Sheldrick, G. M. (1997b). SHELXTL. Version 5.10. Bruker AXS, Inc., Madison, Wisconsin, USA.
- Vance, A. L., Alcock, N. W., Busch, D. H. & Heppert, J. A. (1997). Inorg. Chem. 36, 5132–5134.